
• Measures how runtime scales
with input size

OCD ⇒constant time
•

. Accessing an array by index
◦ Access a hash table

O(ogn) ⇒ Logarithmic time
⇒Runtime increases slowly
as input grows

• Binary search on sorted array
• performing operations on a balanced

binary tree

⇒

⇒

1 of 4



0C) ⇒Linear time

⇒Runtime grows with input as each
element is touched once

• Finding minimax elements in an
unsorted array
• Checking if an element exists

in an unsorted array

O(nlogn)⇒ Linearithmic time

⇒ Runtime of most efficient sorting
algorithms (merge sort, quick sort, heap

◦ (c) ⇒ Quadratic time

• Bubble sort
• Nested loops

⇒

⇒

⇒

⇒

⇒

2 of 4



◦ (n) ⇒ Cubic time

• Naive matrix multiplication
• Triple nested loops

◦ (2) ⇒ Exponential time

◦ Recursive algorithms

On 1)⇒ Factorial time

O Permutation - generation problems

↳
Very inefficient for trivial input size

⇒

⇒

⇒

3 of 4



Important to note that big-0 is not
everything⇒ its important to consider how

algorithms work in the memory/rest of theArray Access system

Although accessing a 2D array
is O(n2) , accessing by rows is faster
than accessing by columns!
Reading row -wise maximises sequential

access ⇒ More cache friendly

Linked list us Array
• Both are linear time

◦ Accessing an array is faster

↳
Array elements are closer together

↳Linked - list nodes are often
scattered in memory

⇒

😐😐🙂😉

⇒

4 of 4


