
Garbage Collector combines the following

approaches :

Concurrency

② Tri - colour

③ Mark and sweep

Tri - colour

- White objects are not yet processed

by the GC
* May/may not be discoverable

- Grey objects are discovered and reachable

from the roots

1①

②

1 of 10



- Black objects are reachable and fully processed

- It's descendants are also reachable

Write Barriers

When a pointer that references
a white object is written to a
black object , that object is marked
as grey.

- This prevents objects being
sweeped prematurely

- Allows the program to run concurrents

*prevents race conditions of an object

being sweeped when a white objects
pointer gets written to a black

object

2 of 10



phases of a GC cycle

1- Setup

2 . Mark

3 . Mark Termination

4. Sweep

Mark phase involves tracing the heap
and identifying reachable objects .

Mark Termination ensures all goroutines
reach a

'
Garbage Collection safepoint

'

and scans remaining grey objects in
the worklist and the stack.

3 of 10



Mark collection is the only phase
that is not concurrent . This is
because once all goroutines reach a

GC safepoint, they're all stopped while

the stack and remaining grey objects

are scanned .

All other phases are concurrent!
- Go's GC is both concurrent and

parallel

Parrallelisation occurs by GC
tasks occurring across

4 of 10



Stack Frames

- A stack frame is a portion
of the call stack

- Each time a function is called,
a new stack frame is allocated

- A stack frame holds a function's
Variables , return addresses and other
function - specific data

- Deallocated once the function
completes

5 of 10



Stack size

- Each goroutine is assigned a small
stack

- The size of a stack is dynamic

stack Resizing

- Occurs when a function needs more

space in the stack

1. A larger stack is allocated

2 . All stack contents are copied over
and pointers are updated

3. Old stack is deallocated

6 of 10



- Stack shrinking occurs when
GC cycle notices large unused
stack space

- Memory deallocated from stack
shrinking is given to the heap

- Stack shrinking increases efficiency
in memory management

-

process of shrinking/growing stack

space incurs overhead !
* This is because when a stack is

increased in size, a new stack must be
created and its contents moved

- Due to resizing overhead, stack

space is not shrunk immediately, only
when a large portion is not used

7 of 10



Heap Growth Ratio

- GOGC is used to trigger the

garbage collection cycle when

the heap grows a certain. multiplier
writ. heap size at end of last GC
cycle
- GOGC =100 will mean that
the GC cycle will start when the

heap grows twice the size of
the heap at the end of last GC
cycle !

- G0G C-50 will mean GC is triggered
when heap grows 1.5 times of heap size
at the end of last GC cycle .

8 of 10



Finalisers

- Execute cleanup ops before GC
deallocates an object

- Used to free non -memory resources

* File descriptors

* Network connections

* Database Handlers

- Invoked when GC notices an object

is not reachable

- Go doesn't guarantee that a finaliser

will be
'

run
* when the program doesn't terminate

cleanly for e.ge 0s .ExitC) is called

- Not deterministic
- Adds complexity

9 of 10



10 of 10


