Notebook - The Golang Scheduler kindle

Kevin Kelche

Page 4 | Highlight

| a scheduler is a program that decides which process should be executed next.

Page 4 | Highlight

| The Golang scheduler is responsible for scheduling the goroutines to the kernel threads.

Page 7 | Highlight

scheduler is responsible for adding goroutines to the run queue and removing them from the run
queue. The run queue follows the FIFO

Page 7 | Highlight

A mutex is a lock that is used to synchronize access to a shared resource. In our case, the

shared resource is the run queue.

Page 7 | Highlight

| mutex to make sure that only one kernel thread can access the run queue at a time.

Page 10 | Highlight klndle
| starvation

Note:

(ool W o7k Shapyebion/

Page 10 | Highlight

Preemption is the ability of the scheduler to preempt (stop) a goroutine that is currently running
and execute another goroutine.

Page 10 | Highlight

if a goroutine is running for more than 10ms, the scheduler will preempt it and execute another

goroutine.

Page 10 | Highlight

preempted goroutine will be added to the end of the global run queue which is a FIFO queue.
This means that the goroutine will be executed after all the other goroutines in the global run

queue.

Page 11 | Highlight klndle

local run queue is a run queue that is local to a kernel thread. This means that each kernel thread
has its run queue.

Page 11 | Highlight

each kernel thread will have its run queue and will not be affected by the other kernel threads in
terms of resource sharing.

Page 11 | Highlight

If the local run queue is full, the goroutine will be added to the global run queue. The global run
queue is a queue that is shared between all the kernel threads.

Page 12 | Highlight

if a thread is blocked in a system call, the thread does not need to maintain its local run queue.
Subsequently, those goroutines will be run elsewhere.

Page 12 | Highlight

The P is in charge of managing the interaction between the local run queues, the global run
queue, and the kernel threads.

Page 13 | Highlight

Work stealing is a technique that is used to balance the load between the processor’s kernel
threads.

Page 13 | Highlight

a processor is idle, it will steal work from another processor or the global run queue, or the
network poller.

Page 14 | Highlight klndle

| taking half of the work from the other processor’s run queue and adding it to its run queue.

Page 14 | Highlight

Before a processor starts stealing work, it will first check its run queue. If the run queue is not
empty, it will pull a goroutine from the run queue and execute it. If the run queue is empty, it will
then check the global run queue. It only checks the run queue 1/61 of the time. This is done to
avoid the overhead of checking the run queue all the time. There is a tick that counts the number
of times we have checked the local run queue, once it reaches 61 or a multiple of 61, we check
the global run queue. This is important to avoid the starvation of goroutines in the global run
queue.

A Wo&essaf w'\% M e ?’Lﬂowﬁ_
o oprewe djog B e pre
%o w#ga Quee M ATV W—e,

docs wo¥ STy ve

Page 20 | Highlight klndle

| time slice inheritance.

Note:

\/\)M S })4'\“5 7

Page 22 | Highlight
When this happens, the go runtime will call releasep to release the processor. This will
disassociate the processor from the kernel thread. The processor will then be assigned a new

kernel thread that is already available or a new kernel thread will be created.

Note:

T8 a Kegrol Yrad 9o blejief

ONn O~ fTDC@\)$' 36[,& 5L of u);)))
FeAede ¢rpom /o_ \ANfg:A ol astsFn ibself-

'€0 N wdo-i)a)O]C \(‘_@[V\QL Wf@g of
~ Kerve Yol s cpoted

Page 23 | Highlight klndle

go scheduler will do immediate handoff if it knows that the syscall will be blocking for a long time.
For instance, doing a read on a socket will block the kernel thread for a long time.

Page 23 | Highlight

other cases, it will let the processor be in a block. It will then set the status to reflect that itis in a
syscall. Using Sysmon the go runtime will periodically check if the processor is still in a syscall.

