
1

Notebook - The Golang Scheduler

Kevin Kelche

Page 4 | Highlight

a scheduler is a program that decides which process should be executed next.

Page 4 | Highlight

The Golang scheduler is responsible for scheduling the goroutines to the kernel threads.

Page 7 | Highlight

scheduler is responsible for adding goroutines to the run queue and removing them from the run 

queue. The run queue follows the FIFO

Page 7 | Highlight

A mutex is a lock that is used to synchronize access to a shared resource. In our case, the 

shared resource is the run queue.

Page 7 | Highlight

mutex to make sure that only one kernel thread can access the run queue at a time.



2

Page 10 | Highlight

starvation

Note: 

Page 10 | Highlight

Preemption is the ability of the scheduler to preempt (stop) a goroutine that is currently running 

and execute another goroutine.

Page 10 | Highlight

if a goroutine is running for more than 10ms, the scheduler will preempt it and execute another 

goroutine.

Page 10 | Highlight

preempted goroutine will be added to the end of the global run queue which is a FIFO queue. 

This means that the goroutine will be executed after all the other goroutines in the global run 

queue.



3

Page 11 | Highlight

local run queue is a run queue that is local to a kernel thread. This means that each kernel thread 

has its run queue.

Page 11 | Highlight

each kernel thread will have its run queue and will not be affected by the other kernel threads in 

terms of resource sharing.

Page 11 | Highlight

If the local run queue is full, the goroutine will be added to the global run queue. The global run 

queue is a queue that is shared between all the kernel threads.

Page 12 | Highlight

if a thread is blocked in a system call, the thread does not need to maintain its local run queue. 

Subsequently, those goroutines will be run elsewhere.

Page 12 | Highlight

The P is in charge of managing the interaction between the local run queues, the global run 

queue, and the kernel threads.

Page 13 | Highlight

Work stealing is a technique that is used to balance the load between the processor’s kernel 

threads.

Page 13 | Highlight

a processor is idle, it will steal work from another processor or the global run queue, or the 

network poller.



4

Page 14 | Highlight

taking half of the work from the other processor’s run queue and adding it to its run queue.

Page 14 | Highlight

Before a processor starts stealing work, it will first check its run queue. If the run queue is not 

empty, it will pull a goroutine from the run queue and execute it. If the run queue is empty, it will 

then check the global run queue. It only checks the run queue 1/61 of the time. This is done to 

avoid the overhead of checking the run queue all the time. There is a tick that counts the number 

of times we have checked the local run queue, once it reaches 61 or a multiple of 61, we check 

the global run queue. This is important to avoid the starvation of goroutines in the global run 

queue.

Note: 



5

Page 20 | Highlight

time slice inheritance.

Note: 

Page 22 | Highlight

When this happens, the go runtime will call releasep to release the processor. This will 

disassociate the processor from the kernel thread. The processor will then be assigned a new 

kernel thread that is already available or a new kernel thread will be created.

Note: 



6

Page 23 | Highlight

go scheduler will do immediate handoff if it knows that the syscall will be blocking for a long time. 

For instance, doing a read on a socket will block the kernel thread for a long time.

Page 23 | Highlight

other cases, it will let the processor be in a block. It will then set the status to reflect that it is in a 

syscall. Using Sysmon the go runtime will periodically check if the processor is still in a syscall.


