
Scalable systems can handle increased

loads by adding resources while
maintaining performance

↳ While maintaining cost -efficiency

Scalability bottlenecks

Centralised components
* Single database

-

- High latency operations
* long - running dataprocessing

The bottlenecks can be made
scalable by optimising their performance

- Implementing caching

- Replication to distribute the load

1 of 8



Stateless

Architure does not keep track of
state between requests

More fault tolerant
↳ If a server goes down, no

state or data is lost

- State can be observed by using
distributed caches or databases

Architecture

2 of 8



Loose Coupling

- Using well - defined interfaces

(or APIs) for comms

- Makes it easy to modify/create microservices

- Components can operate independent

of each other

Tight
Coupling Loose

Coupling

•

⑥ 🙂

3 of 8



Event - Driven Architecture

- Services emit/listen to events

- Allows for non -blocking operations to
continue ⇒Asnynchrous

- Helps mitigate tight coupling
* Reduces risk of cascading failures

Asynchronous processing introduces
the following complexities :

- Error Handling
- Debugging

- Data Consistency

⇒

4 of 8



Vertical Scaling

Increasing R.AM/CPU of a machine

- Useful when its challenging to
horizontally scale a system

- Has limitations -
"
you can only make

a machine so powerful
"

More expensive than horizontal
scaling

5 of 8



Horizontal scaling

Adding more machines to a system

Better fault tolerance

More cost - effective

Challenge

- Data consistency
- Increased network overhead
- Managing distributed systems

-

6 of 8



- Long - running tasks ⇒ break them
down into smaller chunks that can
be run parallel

Queues can be split into multiple

queues to spread load

Design patterns that can help
distribute workload :

- Fan - out
- pipes

- Filters

7 of 8



Techniques for scalable systems

Load balancing
✗Roundrobin }algorithms
* Least connections used

- Caching
* Storing frequently accessed data

closer to where its needed

- CDN
* Offload traffic , improve response

time for users globally

- Sharding
* Splitting a monolithic database

into multiple shards (stored on
different servers)

* Allows for parallel processing

8 of 8


